Coherent properties of single rare-earth spin qubits.

نویسندگان

  • P Siyushev
  • K Xia
  • R Reuter
  • M Jamali
  • N Zhao
  • N Yang
  • C Duan
  • N Kukharchyk
  • A D Wieck
  • R Kolesov
  • J Wrachtrup
چکیده

Rare-earth-doped crystals are excellent hardware for quantum storage of photons. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here we present experimental results on high-fidelity optical initialization, efficient coherent manipulation and optical readout of a single-electron spin of Ce(3+) ion in a yttrium aluminium garnet crystal. Under dynamic decoupling, spin coherence lifetime reaches T2 = 2 ms and is almost limited by the measured spin-lattice relaxation time T1 = 4.5 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce(3+) emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal.

All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a ...

متن کامل

SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence

SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic s...

متن کامل

Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. T...

متن کامل

Rare earth doped crystals for quantum information manipulation

Quantum information manipulation applied to computing is a promising way to dramatically improve some complex calculations and quantum systems simulation. To date, the physical systems able to perform quantum calculations are still very rare and limited to a few quantum bits, so called qubits. It has been proposed that rare earth ions in single crystals at liquid helium temperature could provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014